CURRENT UNDERSTANDING OF DIAGNOSIS AND TREATMENT OF RARE MITOCHONDRIAL DISORDERS

L.V.K.S. Bhaskar1*, Hrishikesh Mishra1 and P.K. Patra1,2
1Sickle Cell Institute Chhattisgarh, Raipur, India, 2Department of Biochemistry, Pt. JNM Medical College, Raipur, India

ABSTRACT

Each of our cells contains on an average 500 to 2,000 little "power factories" called mitochondria that are responsible for supplying our energy needs. Approximately 1000 different proteins in mitochondria and defects in many such proteins can be characterized and described under the heading 'metabolic diseases', or inborn errors of metabolism. Mitochondrial disorders are a clinically heterogeneous group of disorders that arise as a result of dysfunction of the mitochondrial respiratory chain or electron transport chain. The manifestations of mitochondrial disorders are extremely diverse; include numerous symptoms of variable severity, and affect many different organs of the body such as brain, kidneys, muscles, heart, eyes, ears, etc. Many mitochondrial disorders are so new that they have not yet been mentioned in the medical textbooks or in to the medical literature. Mitochondrial disorders are caused by mutations in either mitochondrial DNA (mtDNA) or nuclear DNA. Elevated lactic acid or lactate to pyruvate ratio (>20:1) in blood or cerebrospinal fluid (CSF) is a common sign of mitochondrial dysfunction. Muscle biopsy is the gold-standard for the diagnosis of many mitochondrial disorders and requires specialized microscopic analyses and biochemical tests. Laboratory studies typically include: blood tests, brain MRI or CT scans, heart tests (electrocardiogram and echocardiograms), ophthalmological and neurological evaluations, and hearing tests. Finally, genetic analysis of blood, urine, or muscle is performed to pinpoint the exact mutation responsible for a specific disease. Treatment of mitochondrial disorders is limited. Therapies to treat specific symptoms and signs of mitochondrial disorders are very important. This article provides a brief summary of our present knowledge and understanding of mitochondrial disorders.

INTRODUCTION

Mitochondria are intracellular organelles that produce energy in the cell. Primordial eukaryotic cells were initially anaerobic, before they developed symbiotic relationship with bacteria that use oxygen and eventually these bacteria evolved into mitochondria.1 Human body contains approximately 250 different cell types, whose gene expression varies in each cell type through selective transcription and are tailored to meet specialized needs.2 In the same manner, mitochondrion is tailored to meet the energy demands of the various cell types.3 Cells have very high to very low number of mitochondria, depending upon their energy requirement.

Cone photoreceptor cells of human eye have maximum number of mitochondria to meet the higher demand for metabolic energy associated with photo transduction.4 Mitochondria comprise ~80% of intracellular volume of cone cells. Similarly, in extra-ocular muscles, mitochondria comprise ~60% of intracellular volume. In cardiac muscle cells, mitochondria comprise ~40% of intracellular volume. Some cells have very few mitochondria and some are completely lacking. Thrombocytes have only 2-6 mitochondria.5 Although the pre-erythroblast has mitochondria, mature erythrocyte does not have mitochondria.

Mitochondria are comprised of outer, inner membranes and cytoplasm called matrix. Inner membrane has series of protein complexes, known as electron transport chain. These complexes require ubiquinone and cytochrome c cofactors. Area between two membranes harbour enzymes involved in fatty acid transport. The matrix has the enzymes involved in beta oxidation of fatty acids.6 Although, mitochondria are having their own genome, nuclear genome regulates the biogenesis of mitochondria and encodes 99% of its proteins.7 Biogenesis of mtDNA requires nuclear genes, viz., DNA polymerase gamma (polG) and DNA helicases.8 Defects in these enzymes cause mtDNA depletion and multiple deletions. Hence, the activities of mitochondrial components depend upon nuclear as well as mtDNA.9,10 Mitochondrial genome has only 37 genes, out of which 13 encode 13 enzymes out of 90 involved in respiratory chain, 2 rRNAs and 22 tRNAs.
Thus majority of enzymes of respiratory chain are encoded by nuclear genome.

Further, replication of mtDNA mostly depends upon factors encoded by nuclear DNA, indicating its control over mtDNA and its proteins. Thus, an intricate inter-genomic communication plays a role in biogenesis of mitochondria and mitochondrial DNA. Mitochondrial genome is circular and has 16,569 nucleotides, with two hyper variable regions, cytochrome b region, several subunits ND1 to ND6, complex III, IV, ATP6 and ATP8.25 HVR I and II are useful in tracing the maternal ancestry in population genetics and cytochrome b region is useful in species identification and forensic studies. Because mtDNA have a high mutation rate and lack of repair mechanisms, once a mutation occurs in mtDNA it is permanent.12 Hence, we can find many mutations, all over the circular mtDNA. Furthermore, mitochondrial genes are not having introns and follow non universality of genetic code.13

MITOCHONDRIAL DISORDERS

Mitochondrial disorder can refer to the shutdown of some or all the mitochondria that lead to cutting of essential energy supply to the cell or tissues.14 Initially mtDNA mutations were thought to be the reason to cause mitochondrial disorder.15-18 Later, knowing about the control of nuclear DNA over mitochondrial DNA and mitochondrial biogenesis, researchers are looking into the nuclear DNA.19-22 Mitochondrial disorders may also be the result of acquired mitochondrial dysfunction due to drugs, infections and environmental factors.23 Mitochondrial disorder can be sporadic or inherited. mtDNA disorders show maternal inheritance because embryo acquires mitochondria only from oocyte due to exclusion of sperm cell mitochondria that are located in its midpiece.24 If the mother is having mitochondrial disorder, it will be transmitted to both sons and daughters. But sons cannot transmit to their progeny, as the daughters do. If nuclear genes are involved, the inheritance pattern may be autosomal dominant or recessive.25,26 In the absence of solid genotype-phenotype correlation, in some cases correlation can be identified, if nuclear genes coding mitochondrial proteins are involved. Mitochondrial Neurogastrointestinal Encephalopathy (MNGIE) is one of the important rare mtDNA disorders.27,28 This disease is characterized by progressive gastrointestinal dysmotility and cachexia manifesting as early satiety, nausea, dysphagia, gastroesophageal reflux, postprandial emesis, episodic abdominal pain and/or distention, and diarrhea; ptosis/ ophthalmoplegia or ophthalmoparesis; hearing loss; and demyelinating peripheral neuropathy manifesting as paresthesias (tingling, numbness, and pain) and symmetric and distal weakness more prominently affecting the lower extremities.29

VARIATIONS IN PHENOTYPIC EXPRESSION

The involvement of mtDNA and nuclear DNA mutation property, heteroplasmy, threshold effect (bottleneck phenomenon), mitotic potential of the tissue, energy demand of tissue and age related changes in the mitochondria may greatly affect the phenotypic expression of mitochondrial disorders.30 If the nuclear DNA mutations are involved, disease manifests in early childhood and have more severe and diffuse expression. Unlike nuclear DNA mutations, mitochondrial mutations manifest the disease in adulthood with more indolent and mosaic fashion.31,32 The increasing clinical and genetic heterogeneity of mitochondrial disorders that are reported in recent literature, reflect the above principle (Table 1). Presence of both wild and mutant mtDNA in cell is called as heteroplasmy. Because of heteroplasmy, proportion of mutant mtDNA differs in the different tissues or even in cells of same tissue. Disease can be expressed only when the mutant mtDNA reaches to certain threshold, which depends on the energy metabolism of the cell.33,34 If the cell is dividing mitotically, the mutant and wild type mitochondria will be randomly segregated into daughter cells. In case of neurons and muscle cells, which are not undergoing mitosis, mutations accumulate.35 Age related changes in mitochondria, that include damage to mtDNA by free radicals, decrease in the efficiency of Krebe’s cycle, altered response to long term energy demands, respiratory chain defects due to energy alterations and decreased membrane fluidity contribute to the phenotypic expression of mitochondrial disorders.36-38

DIAGNOSIS

There is no definite diagnosis for mitochondrial disorders. After taking the family history and clinical evaluation to identify recognizable syndromes, minimally invasive investigations like imaging, blood and urine chemistry or invasive investigations such as biochemical, histochecminal and molecular studies on the biopsy sample collected from liver, skin and muscle may be performed (Table 2).39-42 The biochemical tests include lactate and
Table 1: Overview of Clinical and Genetic Features Associated with Mitochondrial Disorders.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Disorder</th>
<th>Age of Onset</th>
<th>Key Clinical Features</th>
<th>Gene Implicated/Inheritance Pattern</th>
<th>Diagnosis</th>
<th>Treatment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Progressive infantile Poliodystrophy (Alpers disease)</td>
<td>1-5 years</td>
<td>Seizures, dementia, cerebral degeneration, and liver dysfunction</td>
<td>POLG/ Autosomal recessive</td>
<td>DNA Mutation analysis</td>
<td>Anticonvulsants and Physiotherapy.</td>
<td>86, 87</td>
</tr>
<tr>
<td>2</td>
<td>Lethal infantile cardiomyopathy (Barth Syndrome)</td>
<td>Variable</td>
<td>skeletal myopathy, cardiomyopathy and neutropenia</td>
<td>TAZ/ X-linked recessive</td>
<td>Levels of 3-methylglutaconic acid in urine</td>
<td>Diet supplementation with L-carnitine or Oral pantothenol.</td>
<td>88, 89</td>
</tr>
<tr>
<td>3</td>
<td>Carnitine acylcarnitine translocase deficiency</td>
<td>Neonates</td>
<td>convulsions, hypothermia, encephalopathy, cardiomyopathy and liver dysfunction</td>
<td>SLC25A20/ Autosomal recessive</td>
<td>Enzyme assay or DNA analysis</td>
<td>Carnitine and a low-fat diet supplemented medium-chain triglycerides.</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>Carnitine deficiency</td>
<td>Neonates</td>
<td>Cardiomyopathy, failure to thrive, encephalopathy, skeletal myopathy</td>
<td>SLC22A5/ Autosomal recessive</td>
<td>Enzyme assay or DNA analysis</td>
<td>Diet supplementation with L-Carnitine</td>
<td>91, 92</td>
</tr>
<tr>
<td>5</td>
<td>Cerebral Creatine Deficiency Syndrome</td>
<td>Infants to variable age</td>
<td>Mental retardation, expressive speech and language delay, autistic like behaviour and epilepsy</td>
<td>GAMT & AGAT / autosomal recessive; SLC6A8/ X-linked</td>
<td>Enzyme assay or DNA analysis</td>
<td>Diet supplementation with L-Carnitine</td>
<td>93, 94</td>
</tr>
<tr>
<td>6</td>
<td>Coenzyme Q10 Deficiency</td>
<td>Infants</td>
<td>Encephalomyopathy, nephropathy, cerebellar ataxia, and isolated myopathy and recurrent myoglobinuria</td>
<td>Probably autosomal recessive</td>
<td>Estimation of Co-enzyme Q10 level through HPLC</td>
<td>Administration of Co-enzyme Q10</td>
<td>95</td>
</tr>
<tr>
<td>7</td>
<td>Complex-1 or NADH dehydrogenase deficiency</td>
<td>Infants to adults</td>
<td>Myopathy, Mitochondrial encephalomyopathy and fatal infantile multisystem disorder</td>
<td>Gene families of NDUFS, NDUFB, NDUFA and MTND/ Maternal or Autosomal recessive or X linked</td>
<td>Enzyme assay</td>
<td>riboflavin, thiamine, biotin, co -enzyme Q10, carnitine, and the ketogenic diet</td>
<td>96</td>
</tr>
<tr>
<td>8</td>
<td>Complex-2 or Succinate dehydrogenase deficiency</td>
<td>Infants to adults</td>
<td>Encephalomyopathy, developmental delay, hyoptonia, respiratory failure, ataxia, myoclonus.</td>
<td>SDHA, SDHAF1/ autosomal recessive</td>
<td>Enzyme assay</td>
<td>No effective treatment</td>
<td>97, 98</td>
</tr>
<tr>
<td>9</td>
<td>Complex-3 or Ubiquinone-cytochrome c oxidoreductase deficiency</td>
<td>Infants to adults</td>
<td>Fatal infantile encephalomyopathy and infantile histiocytic cardiomypathy.</td>
<td>UQCR gene family or MT-CYB / Probably autosomal recessive/ Maternal</td>
<td>Enzyme assay</td>
<td>No effective treatment</td>
<td>99, 100</td>
</tr>
<tr>
<td>10</td>
<td>Complex-4 or Cytochrome c oxidase deficiency</td>
<td>Infants to 2 years of age</td>
<td>Encephalomyopathy and myopathy</td>
<td>COX gene family/ Autosomal recessive</td>
<td>Enzyme assay and histopathology for ragged-red fibers</td>
<td>No effective treatment</td>
<td>101</td>
</tr>
<tr>
<td>S.No.</td>
<td>Disorder</td>
<td>Age of Onset</td>
<td>Key Clinical Features</td>
<td>Gene Implicated/Inheritance Pattern</td>
<td>Diagnosis</td>
<td>Treatment</td>
<td>Reference</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>--------------</td>
<td>---</td>
<td>-------------------------------------</td>
<td>--</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>11</td>
<td>Complex-S or ATP synthase deficiency</td>
<td>Infants to 10 years</td>
<td>Myopathy, hypotonia, hepatomegaly, facial dysmorphism and microcephaly</td>
<td>ATPAF2, TMEM70, ATP5E, ATPSA1/ maternal inheritance</td>
<td>Assaying ATP synthesis in cultured skin fibroblasts</td>
<td>No definitive treatment</td>
<td>102</td>
</tr>
<tr>
<td>12</td>
<td>Chronic Progressive External Ophthalmoplegia Syndrome</td>
<td>Before 20 years age</td>
<td>Dysfunction of the central nervous system, visual myopathy and retinitis pigmentosa.</td>
<td>mtDNA deletions and point mutations/ maternal inheritance</td>
<td>Muscle biopsy to visualize “ragged red fibers”. DNA analysis</td>
<td>No definitive treatment, surgical intervention for drooping eyelids.</td>
<td>103</td>
</tr>
<tr>
<td>13</td>
<td>Carnitine Palmitoyl Transferase -1 deficiency</td>
<td>8 to 18 months</td>
<td>Enlarged liver, recurrent Reye-like episodes triggered by fasting or illnesses.</td>
<td>CPT1A/ Autosomal recessive</td>
<td>Enzyme assay, DNA analysis</td>
<td>Medium-chain triglycerides</td>
<td>104</td>
</tr>
<tr>
<td>14</td>
<td>Carnitine Palmitoyl Transferase -2 deficiency</td>
<td>Infants and 15 to 30 years</td>
<td>Myopathic, Reye-like syndrome, hepatomegaly, hypoglycemia, and cardiac arrhythmia.</td>
<td>CPT2/ Autosomal recessive</td>
<td>Enzyme assay, DNA analysis</td>
<td>High carbohydrate, low-fat diet</td>
<td>105</td>
</tr>
<tr>
<td>15</td>
<td>Kearns-Sayre Syndrome</td>
<td>Before 20 years age</td>
<td>Chronic progressive external ophthalmoplegia, pigmentary retinopathy, cardiac conduction defects.</td>
<td>mtDNA deletions/ Maternal</td>
<td>Muscle biopsy to visualize “ragged red fibers”, DNA analysis and lactic and pyruvic acid levels</td>
<td>Coenzyme Q10, insulin, cardiac drugs and surgical intervention for drooping eyelids.</td>
<td>106</td>
</tr>
<tr>
<td>16</td>
<td>Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation (LBSL)</td>
<td>Infants, children and adults</td>
<td>slowly progressive cerebellar ataxia and spasticity with dorsal column dysfunction</td>
<td>DARS2 / autosomal recessive</td>
<td>DNA analysis, brain and spinal cord MRI</td>
<td>Corticosteroids have shown relief in bladder symptoms</td>
<td>107, 108</td>
</tr>
<tr>
<td>17</td>
<td>Long-Chain Acyl-CoA Dehydrogenase Deficiency (LCAD)</td>
<td>Infants</td>
<td>Failure to thrive, hepatomegaly, cardiomegaly and metabolic encephalopathy</td>
<td>ACADL / Autosomal recessive</td>
<td>DNA analysis</td>
<td>High carbohydrate-low fat diet, medium-chain fatty acids. Carnitine or riboflavin supplementation.</td>
<td>109</td>
</tr>
<tr>
<td>18</td>
<td>Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHAD)</td>
<td>Infants</td>
<td>Encephalopathy, liver dysfunction, cardiomyopathy and peripheral neuropathy</td>
<td>HADHA/ Autosomal recessive</td>
<td>DNA analysis, Fatty acid oxidation probe test</td>
<td>High carbohydrate-low fat diet, medium-chain fatty acids. Carnitine or riboflavin supplementation.</td>
<td>110</td>
</tr>
<tr>
<td>S.No.</td>
<td>Disorder</td>
<td>Age of Onset</td>
<td>Key Clinical Features</td>
<td>Gene Implicated/Inheritance Pattern</td>
<td>Diagnosis</td>
<td>Treatment</td>
<td>Reference</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------------</td>
<td>----------------------</td>
<td>-------------------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>19</td>
<td>Leigh Syndrome</td>
<td>Infants or childhood</td>
<td>Seizures, hypotonia, poor motor function, ataxia. Visible necrotizing lesions on the brain MRI scan</td>
<td>BCS1L, COX10, NDUF gene family/Autosomal recessive/X-linked recessive</td>
<td>DNA analysis, lactic acidosis or acidemia and hyperalaninemia</td>
<td>Thiamine, coenzyme Q10, riboflavin, biotin, creatine, succinate, and idebenone. Dichloroacetate is being used in some clinics.</td>
<td>111</td>
</tr>
<tr>
<td>20</td>
<td>Luft Disease or Nonthyroidal hypermetabolism</td>
<td>Childhood</td>
<td>Hypermetabolism, hyperthermia, polyphagia, polydipsia, and resting tachycardia.</td>
<td>Unknown inheritance</td>
<td>Muscle biopsies showed ragged red fibers</td>
<td>Vitamins C, E, K and Coenzyme Q10, high calorie diet.</td>
<td>112</td>
</tr>
<tr>
<td>21</td>
<td>Glutaric aciduria type 2 or Multiple Acyl-CoA Dehydrogenase Deficiency (MADD)</td>
<td>Neonates and childhood to adulthood</td>
<td>Respiratory distress, muscular hypotonia, hepatomegaly, hypoglycemia, encephalopathy, seizures and heart failure.</td>
<td>ETFDH, ETFA, ETFB/Autosomal recessive</td>
<td>Enzyme assay for short chain dicarboxylic acids in urine</td>
<td>Low fat and low protein diet. Coenzyme Q10 and Riboflavin</td>
<td>113, 114</td>
</tr>
<tr>
<td>22</td>
<td>Medium-Chain Acyl-CoA Dehydrogenase Deficiency (MCAD)</td>
<td>Infants and young children</td>
<td>Episodes of encephalopathy, enlarged and fatty degeneration of the liver, and low carnitine in the blood.</td>
<td>ACADM/Autosomal recessive</td>
<td>Enzyme assay for plasma acylcarnitine, urine organic acid and acylglycine analysis</td>
<td>High carbohydrate-low fat diet, medium-chain fatty acids. Carnitine or riboflavin supplementation.</td>
<td>115</td>
</tr>
<tr>
<td>23</td>
<td>Mitochondrial Encephalomyopathy Lactic Acidosis and Strokelike Episodes (MELAS)</td>
<td>between the ages of 2 and 15</td>
<td>Seizures, stroke-like episodes with focused neurological deficits, recurrent headaches and cognitive regression.</td>
<td>mtDNA point mutations/Maternal</td>
<td>Elevated serum lactate during acute episodes. Respiratory enzyme defects in skeletal muscle</td>
<td>CoQ10, creatine, phylloquinone, other vitamins and anticonvulsants.</td>
<td>116</td>
</tr>
<tr>
<td>24</td>
<td>Myoclonic Epilepsy and Ragged-Red Fiber Disease (MERRF)</td>
<td>in childhood</td>
<td>Myoclonus, epilepsy, progressive ataxia, muscle weakness and degeneration, deafness, and dementia</td>
<td>mtDNA point mutations/Maternal</td>
<td>Histopathology for ragged red fibers, strong reaction for SDH and COX deficiency.</td>
<td>CoQ10, creatine, phylloquinone, other vitamins and anticonvulsants.</td>
<td>117</td>
</tr>
<tr>
<td>25</td>
<td>Mitochondrial Recessive Ataxia Syndrome (MIRAS)</td>
<td>Children to adults</td>
<td>Encephalopathy, neuropathy, refractory epilepsy, ataxia and hepatopathy.</td>
<td>POLG/Autosomal recessive inheritance</td>
<td>Muscle biopsy and DNA analyses</td>
<td>Ketogenic diet, vitamins and Anticonvulsants. Mitochondriotoxic drugs should be avoided.</td>
<td>118, 119</td>
</tr>
<tr>
<td>S.No.</td>
<td>Disorder</td>
<td>Age of Onset</td>
<td>Key Clinical Features</td>
<td>Gene Implicated/Inheritance Pattern</td>
<td>Diagnosis</td>
<td>Treatment</td>
<td>Reference</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>-------------------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>26</td>
<td>Mitochondrial DNA Depletion</td>
<td>Neonates to 20 year of age</td>
<td>Myopathic, encephalomyopathic, hepatocerebral and neurogastrointestinal presentations</td>
<td>TK2, SUCLA2, SUCLG1, RRMB2, DGUOK, TYMP, and POLG / Autosomal recessive</td>
<td>Histopathology for ragged red fibres and SDH. Quantitative real time PCR for mtDNA content in muscle, fibroblasts, blood and liver.</td>
<td>Ketogenic diet, vitamins and Anticonvulsants. Mitochondrion-toxic drugs should be avoided.</td>
<td>120, 121</td>
</tr>
<tr>
<td>27</td>
<td>Myoneurogastrointestinal Disorder and Encephalopathy (MNGIE)</td>
<td>Infants to adults</td>
<td>Severe gastrointestinal dysmotility, cachexia, ptosis, external ophthalmoplegia, sensorimotor neuropathy and asymptomatic levkoencephalopathy.</td>
<td>TYMP / Autosomal recessive</td>
<td>Assay for plasma thymidine and deoxyuridine concentrations</td>
<td>Mitochondrion-toxic drugs should be avoided. Drugs primarily metabolized in liver should be used cautiously.</td>
<td>122</td>
</tr>
<tr>
<td>28</td>
<td>Neuropathy, Ataxia, and Retinitis Pigmentosa (NARP)</td>
<td>Childhood or early adulthood</td>
<td>Sensory neuropathy, muscle weakness, ataxia, dementia, seizures, hearing loss and cardiac conduction defects</td>
<td>mtDNA point mutations / maternal inheritance</td>
<td>Lactate in blood and CSF, Alanine in plasma. Cerebellar atrophy on MRI</td>
<td>Antioxidants help in symptomatic relief.</td>
<td>123</td>
</tr>
<tr>
<td>29</td>
<td>Pearson Syndrome</td>
<td>Infants</td>
<td>sideroblastic anemia, exocrine pancreas dysfunction, steatorrhea, pancreatic fibrosis and insulin-dependent diabetes.</td>
<td>mtDNA deletions / maternal inheritance</td>
<td>Ring sideroblasts are erythroblasts with iron-loaded mitochondria visualized by Prussian blue staining.</td>
<td>Administration of coenzyme Q10 and L-carnitine, physical and occupational therapy.</td>
<td>124</td>
</tr>
<tr>
<td>30</td>
<td>Pyruvate Carboxylase Deficiency</td>
<td>Infants to adults</td>
<td>Developmental delay, recurrent seizures, and metabolic acidosis.</td>
<td>PDH / Autosomal recessive</td>
<td>Enzyme assay in fibroblasts, lactic academia and amino acids in serum and urine.</td>
<td>Hydration and correction of the metabolic acidosis. Supplementation of citrate, aspartic acid, and biotin along with high-carbohydrate and protein diet.</td>
<td>125</td>
</tr>
<tr>
<td>31</td>
<td>Pyruvate Dehydrogenase Deficiency</td>
<td>Infants and young children</td>
<td>Dismorphism with severe cerebral malformations.</td>
<td>PDHA1, PDHB, DLAT, PDHX / Autosomal recessive</td>
<td>Cranial MRI and pyruvate and lactate levels in CSF and blood.</td>
<td>Ketogenic diet, Diet supplementation with thiamine, carnitine or lipoic acid. Phenylbutyrate or dichloroacetate</td>
<td>126-128</td>
</tr>
</tbody>
</table>
pyruvate quantification in blood and CSF. An increased level of lactic acid is one of the important characteristics of mitochondrial disorders.43-46 Lactate to pyruvate ratio reflects cytoplasmic status.47 Elevation of tyrosine, alanine and/or phenylalanine indicates hepato-cerebral form of mtDNA depletion.48 Measurement of these amino acids in CSF and blood may be desirable. Dicarboxylic aciduria reflects impairment of fatty acid beta oxidation, hence direct measurement of dicarboxylic acid in urine may be performed.49 Detection of abnormal levels of carnitine and acyl-carnitine indicate fatty acid beta oxidation defects in cell, through tandem mass spectrometry.50 Fibroblast growth factor-21, involved in lipid metabolism was found to be elevated in patients with mitochondrial skeletal muscle disorders.51 Proliferation of skeletal myofibers helps in using histological and histochemical tools in diagnosing the mitochondrial disorders.52 Gomori trichrome staining can be used to visualize red granular deposits of mitochondria in the subsarcolemmal space of myofibre, which resembles ragged red fibers. These ragged red fibres are cytochrome oxidase (COX) deficient myofibres and succinate dehydrogenase (SDH) histochemistry can diagnose COX deficient fibres.53 Normal COX fibres appear as brown and COX deficient fibres stain poorly. But on repeated staining these fibres give dark blue colour. Hematoxyline-eosine staining shows scattered abnormal vacuolated fibres with clear rim.54 Immunohistochemistry uses antibodies raised against specific protein subunits of respiratory chain. Immunohistochemical staining of a muscle biopsy from Kearns Sayre syndrome showed normal levels of COX4 and reduced levels of COX2.55 Anti DNA antibodies also can be used to detect abnormal mtDNA in muscle fibers. Electron microscopy can be used to detect abnormal ultrastructural changes such as, number, shape and size of mitochondria, absence of cristae and presence of paracrystalline inclusions in mitochondria.54 Various molecular biological techniques can be used to detect mutations, deletions, duplications and copy

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Disorder</th>
<th>Age of Onset</th>
<th>Key Clinical Features</th>
<th>Gene implicated/ Inheritance Pattern</th>
<th>Diagnosis</th>
<th>Treatment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Short-Chain Acyl-CoA Dehydrogenase Deficiency (SCAD)</td>
<td>Infants and young children</td>
<td>Dysmorphic facial features, metabolic acidosis, ketotic hypoglycemia, lethargy, seizures, hypotonia, dystonia, and myopathy.</td>
<td>ACADS/Autosomal recessive</td>
<td>Assay for butyrylcarotine concentrations in plasma and/or ethylmalonic acid concentrations in urine.</td>
<td>Avoidance of longer fasting. Use of carnitine and/or riboflavin supplementation.</td>
<td>129, 130</td>
</tr>
<tr>
<td>33</td>
<td>Short Chain Hydroxy Acyl-CoA Dehydrogenase Deficiency (SCHAD)</td>
<td>Infancy or early childhood</td>
<td>Hyperinsulinemic hypoglycemia with vomiting, lethargy and seizures.</td>
<td>HADH/Autosomal recessive</td>
<td>Measurement of body fluid and cultured cell 3-hydroxy fatty acids.</td>
<td>Diazoxide and chlorothiazide helps in controlling hyperinsulinism. Partial or total pancreatectomy.</td>
<td>131-133</td>
</tr>
<tr>
<td>34</td>
<td>Very Long-Chain Acyl-CoA Dehydrogenase Deficiency (VLCAD)</td>
<td>Neonatal, Early childhood and in Young adults</td>
<td>Hypoketotic hypoglycaemia, liver disease, myoglobinuria, cardiac arrhythmias and cardiomyopathy.</td>
<td>ACADVL and DLG4/Autosomal recessive.</td>
<td>Acylcarntine profile in blood and plasma. VLCAD deficiency using immunohistochemistry.</td>
<td>Dietary treatment is primary. High carbohydrate-low fat diet. Supplementation with carnitine and/or riboflavin. Treatment with bezafibrate offers benefit in myopathic patients.</td>
<td>134, 135</td>
</tr>
</tbody>
</table>
number variations in mtDNA and/or nuclear DNA, to diagnose mitochondrial disorders. Common or known mutations can be detected using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Rare and uncommon mutations can be detected using direct sequencing or denaturing HPLC. Heteroplasmic mutations and copy number variations can be detected using quantitative real time PCR. The deletions and duplications in mtDNA can be assessed by using southern blotting or PCR based strategies. Advancement and automation in the sequencing technology in the form of next generation sequencing, has replaced multiple techniques and made the analysis of entire nuclear genome as well as mitochondrial genome possible. Other assays include measurement of electron transport chain enzyme complex activities based on the absorbance change of the substrate, either NADH or cytochrome c. Measurement of oxygen consumption or oxidative ATP synthesis rates in live cells or isolated mitochondria reflects the integrity of inner mitochondrial membrane and efficiency of oxidative phosphorylation. The respiratory chain complexes can be separated on Blue native PAGE and detected using immunoblotting with commercially available antibodies. Measurement of coenzyme Q levels in plasma, WBCs and other tissues can be performed by HPLC to know the oxidative stress caused by mitochondrial disorders. Based on the patients’ clinical, histological, enzymological, functional, molecular and metabolic evaluations, consensus general diagnostic criteria were made. According to these criteria, for the definite diagnosis of respiratory chain disorders in adults and children, one should follow two major or one major and two minor criteria for definite diagnosis.

CLINICAL SPECTRUM

As described elsewhere in this review, mitochondrial diseases caused by mutations in mtDNA or nuclear encoded mitochondrial genes that are involved in a variety of aspects of energy metabolism and oxidative phosphorylation. Mutations in set of genes involved in aerobic respiration and maintenance of mtDNA cause depletion of mtDNA content in the skeletal muscle or liver cells. Mitochondrial depletion syndrome can present clinically as a mitochondrial myopathy, encephalopathy or encephalohepatopathy. Mitochondrial disorders affect many organ systems that have more mitochondria, such as brain, nerves, muscles, kidney, heart, liver, eyes and ear (Figure 1). Mitochondrial disorder affecting brain leads to developmental delays and mental retardation. Mitochondrial dysfunction contributes to the development of muscle disorders, including muscle wasting, atrophy and degeneration. Involvement of

<table>
<thead>
<tr>
<th>Blood and Urine Chemistry:</th>
<th>Histological and Microscopic Investigations:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactate and pyruvate quantification in blood and CSF</td>
<td>Gomori trichrome staining</td>
</tr>
<tr>
<td>Elevation of tyrosine, alanine and/or phenylalanine in blood and CSF</td>
<td>Hematoxyline eosine staining</td>
</tr>
<tr>
<td>Dicarboxylic acid, ethylmalonic acid in urine</td>
<td>SDH histochemistry: to detect COX deficient fibres</td>
</tr>
<tr>
<td>Carnitine and acyl-carnitine, butyryl-carnitine through tandem mass spectrometry</td>
<td>Immunohistochemistry:</td>
</tr>
<tr>
<td>Coenzyme Q levels in plasma, WBCs and other tissues through HPLC</td>
<td>Antibodies against components of respiratory chain</td>
</tr>
<tr>
<td>Plasma thymidine, deoxyuridine</td>
<td>Anti DNA antibodies</td>
</tr>
<tr>
<td>Thymidine phosphorylase enzyme quantification in leukocytes</td>
<td>Electron Microscopy: to detect abnormal ultrastructural changes</td>
</tr>
</tbody>
</table>

Immunoblotting

<table>
<thead>
<tr>
<th>Detection of Variations in mt and Nuclear DNA:</th>
<th>Molecular Biology Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known mutations can be detected using PCR-RFLP</td>
<td>Blood and Pharmaceutical Investigations:</td>
</tr>
<tr>
<td>Uncommon mutations can be detected using direct sequencing or denaturing HPLC</td>
<td>Mt-DNA deletions and duplications can be assessed by southern blotting or PCR</td>
</tr>
<tr>
<td>Heteroplasmic mutations and copy number variations can be detected using real time PCR</td>
<td>Next generation sequencing</td>
</tr>
</tbody>
</table>

Table 2: Summary of Investigation Tools Used to Diagnose Mitochondrial Disorders.

<table>
<thead>
<tr>
<th>Minimally Invasive Investigations</th>
<th>Histological and Microscopic Investigations:</th>
<th>Detection of Variations in mt and Nuclear DNA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and Urine Chemistry:</td>
<td>Histological and Microscopic Investigations:</td>
<td>Molecular Biology Techniques:</td>
</tr>
<tr>
<td>Blood and Urine Chemistry:</td>
<td>Histological and Microscopic Investigations:</td>
<td>Detection of Variations in mt and Nuclear DNA:</td>
</tr>
<tr>
<td>Lactate and pyruvate quantification in blood and CSF</td>
<td>Gomori trichrome staining</td>
<td>Known mutations can be detected using PCR-RFLP</td>
</tr>
<tr>
<td>Elevation of tyrosine, alanine and/or phenylalanine in blood and CSF</td>
<td>Hematoxyline eosine staining</td>
<td>Uncommon mutations can be detected using direct sequencing or denaturing HPLC</td>
</tr>
<tr>
<td>Dicarboxylic acid, ethylmalonic acid in urine</td>
<td>SDH histochemistry: to detect COX deficient fibres</td>
<td>Heteroplasmic mutations and copy number variations can be detected using real time PCR</td>
</tr>
<tr>
<td>Carnitine and acyl-carnitine, butyryl-carnitine through tandem mass spectrometry</td>
<td>Immunohistochemistry:</td>
<td>Mt-DNA deletions and duplications can be assessed by southern blotting or PCR</td>
</tr>
<tr>
<td>Coenzyme Q levels in plasma, WBCs and other tissues through HPLC</td>
<td>Antibodies against components of respiratory chain</td>
<td>Next generation sequencing</td>
</tr>
<tr>
<td>Plasma thymidine, deoxyuridine</td>
<td>Anti DNA antibodies</td>
<td>Biochemical Assays:</td>
</tr>
<tr>
<td>Thymidine phosphorylase enzyme quantification in leukocytes</td>
<td>Electron Microscopy: to detect abnormal ultrastructural changes</td>
<td>Measurement of electron transport chain enzyme complex activities</td>
</tr>
<tr>
<td>Imaging:</td>
<td>Bone marrow biopsy</td>
<td>Separation of respiratory chain complexes through Blue native PAGE</td>
</tr>
<tr>
<td>Brain and spinal cord MRI and MRS</td>
<td>Biochemical Assays:</td>
<td>Immunoblotting</td>
</tr>
</tbody>
</table>

Immunoblotting

Biochemical Assays:

- Measurement of electron transport chain enzyme complex activities
- Separation of respiratory chain complexes through Blue native PAGE
- Immunoblotting
the peripheral nervous system in mitochondrial disorders contributes to the variability of their clinical expression. Major renal manifestation of mitochondrial disorder is due to ATP involvement in driving the sodium-potassium-ATPase pump. Renal biopsy of these shows non-specific abnormalities of the tubular epithelium with dilatation and obstruction by casts, dedifferentiation, or atrophy. Mitochondrial cardiomyopathy is characterized by abnormal cardiac muscle structure, valvular disease with typical manifestations of hypertrophic and dilated cardiomyopathy, arrhythmias, left ventricular myocardial noncompaction. As the liver is involved in a variety of critical biological functions, incapacitated mitochondrial bioenergetics triggers the pathogenesis of various hepatic diseases such as fatty liver disease, hepatitis, and liver cancer. Blindness and deafness are two important problems respectively in eyes and ears.

TREATMENT

There is no definite cure for the mitochondrial disorders, but treatment can delay the progression of disease or may provide a symptomatic relief. Vitamins and cofactors are in use for treatment of mitochondrial disorders. Thiamine, riboflavin, vitamin C & E and some enzymes such as lipoic acid and coenzyme Q10 are used to treat mitochondrial disorders. B complex vitamins help in decarboxylation, fatty acid oxidation, acetyl-CoA synthesis and lipid metabolism. Vitamin C and Lipoic acid act as antioxidants and vitamin E and Coenzyme Q10 are free radical scavengers. Zinc picolinate is a superoxide dismutase and involved in tissue repair. Biotin is involved in carboxylation and lipid metabolism. However, clinical trials of the therapeutic utility of conventional antioxidants such as Vitamin E or Vitamin C have yielded disappointing results in patients with mitochondrial oxidative damage. Some drugs, that specifically block the lactic acid build up in body are also used for treating mitochondrial disorders. Diet modulation by reducing carbohydrate in diet can be used to decrease the production of damaging free radicals and workload on mitochondria. As the mitochondrial disorders involve defect in exceedingly fundamental level in cell function, no vitamin or cofactor therapy is curative. Further, therapy should be guided by a diet and nutrition specialist. As there is no measurable evidence of improvement in function or disease status and vice versa, evaluating treatment outcomes is difficult. Hence the treating physician should remember that therapy without diagnosis leads to failure in establishing accurate diagnosis.

As mitochondrial disorders exhibit large amount of genetic and phenotypic heterogeneity, development of new drugs is literally a challenging task. However, different animal and cell models are being exploited for understanding and developing treatments. The cell models include yeast mitochondrial disease models and patient derived cell lines, while animal models include *Drosophila melanogaster, Cenorhabditis elegans* and a plethora of mouse models. Further, delivering molecules to mitochondria is difficult due to relative inaccessibility of mitochondria matrix. Furthermore, extreme genetic and phenotypic heterogeneity pose difficulty in conducting clinical trials with adequately large groups of patients. Although there are no clinically relevant universally agreed and validated outcome measures, some pharmacological therapies targeting mitochondrial biogenesis (Bezafibrate, Resveratrol), mitochondrial membrane fluidity and plasticity and mtDNA replication machinery are under development.

CONCLUSIONS

Mitochondrial disorders are extremely complex and involve multiple organ systems with multiple heterogeneous clinical presentations, including inflammation, metabolic syndrome, neuromuscular disorders and cancer. There is no single test to diagnose mitochondrial disorders due to their clinical variability and involvement of large number of nuclear and mitochondrial gene mutations. Although several attempts have been made to significantly modify the suspected
phenotype, mitochondrial dysfunction is now recognized as central in several medical conditions. Hence, novel therapeutic interventions that modify mitochondrial function are currently under development.

REFERENCES

52. Anderson EJ and Neufel PD. Type II skeletal myofibers possess unique properties that potentiate mitochondrial H(2)O(2) generation. American journal of physiology Cell physiology. 2006; 290: C844-51.

73. Niaudet P. Mitochondrial disorders and the kidney.

74. Niaudet P and Rotig A. The kidney in mitochondrial cytopathies.

75. Meyers DE, Basha HI and Koenig MK. Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management.
Texas Heart Institute journal / from the Texas Heart Institute of St Luke’s Episcopal Hospital, Texas Children’s Hospital. 2013; 40: 385-94.

Liver fat deposition and mitochondrial dysfunction in morbid obesity: An approach combining metabolomics with liver imaging and histology.

77. Merz B. Eye disease linked to mitochondrial gene defect.

Riboflavin-responsive oxidative phosphorylation complex I deficiency caused by defective ACAD9: new function for an old gene.

The Cochrane database of systematic reviews. 2008: CD007176.

Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice.

Molecular genetics and metabolism. 2004; 83: 138-49.

85. Viscomi C, Bottani E and Zeviani M. Emerging concepts in the therapy of mitochondrial disease.
Biochimica et biophysica acta. 2015; 1847: 544-57.

86. Hunter MF, Peters H, Salemi R, Thorburn D and Mackay MT.
Alpers syndrome with mutations in POLG: clinical and investigative features.

POLG mutations in Alpers syndrome.

Clinical laboratory studies in Barth Syndrome.
Molecular genetics and metabolism. 2014; 112: 143-7.

89. Raja V and Greenberg ML. The functions of carnitine in cellular metabolism-potential modifiers of the Barth syndrome phenotype.
Chemistry and physics of lipids. 2014; 179: 49-56.

92. Fu LJ, Chen SB, Han LS, et al. [Clinical presentation and therapeutic outcomes of carnitine deficiency-induced cardiomyopathy].

97. Vladutiu GD and Heffner RR. Succinate dehydrogenase deficiency.

Address Correspondence To:
DR. L.V. K. S. Bhaskar
Senior Scientist
Sickle Cell Institute Chhattisgarh
Genetic Lab, Department of Biochemistry
Pt. JNM Medical College
Raipur-492006
Chhattisgarh, India
Mobile:08224979600
Email: bhaskar@scic.co.in